Low-coordinate 3d transition metal complexes with a bulky carbazolyl ligand
Michelle Kaiser and Alexander Hinz

Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC) Engesserstr. 15, Building 30.45, 76131 Karlsruhe, Germany

E-mail: michelle.kaiser@kit.edu

Since the early 1960s the understanding of organometallic coordination chemistry has evolved. Sterically demanding ligands showed that the coordination number of a metal does not only depend on its own preference but even more on the properties of the used ligands, so the rise of such low-coordinate complexes started. Accordingly, the term “low-coordinate” nowadays describes complexes with a coordination number of 3 or less. As our group developed a bulky carbazolyl ligand R (1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazole), which showed its utility in low coordinate main group chemistry, especially with silicon[1], and in the stabilisation towards dicoordinate copper(II) complexes[2] we aimed to extend its scope to other 3d transition metals. Through a metathesis approach with the corresponding potassium carbazolide we were able to generate a row of novel transition metal complexes of the type “RMX” (M = Cr, Mn, Fe, Co, Ni) with additional THF molecules. The complexes appear either in monomeric (RM(THF)₂(Cl)) or in dimeric ([RM(THF)(µ-Cl)]₂) form, dependent on the used metal. Treatment of these complexes with the stronger Lewis donor PMe₃ lead to the formation of the phosphine analogous. Reaction with BCF (Tris(pentafluorophenyl)-borane) of the dimeric species instead allows the abstraction of the THF molecules and forces the metal centers in an extremely unsaturated environment. This creation of low-coordinate, highly reactive species should be used for various subsequent reactions.

References: