## Directed Synthesis and Chemistry of Unsymmetric Dicationic Diboranes and Their Use in Frustrated Lewis Pair-like Chemistry

Lucas Kistner<sup>1</sup>, Dario Kowatsch<sup>1</sup>, Andreas Marz<sup>1</sup>, Elisabeth Kaifer<sup>1</sup>, Hans-Jörg Himmel<sup>1</sup>

<sup>1</sup> Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

E-mail: I.kistner@stud.uni-heidelberg.de

Frustrated Lewis Pairs (FLPs) have been intensively investigated in the past years due to their intriguing ability to activate small molecules.<sup>[1]</sup> So far, no FLPs based on dicationic diboranes with two B<sup>II</sup> atoms that are engaged in direct B–B bonding have been realized. Here, we report the first glimpse on the FLP-like chemistry with unsymmetrically substituted dicationic diboranes. Reaction of the electron-rich ditriflato-diborane B<sub>2</sub>(hpp)<sub>2</sub>(OTf)<sub>2</sub> with phosphino-pyridines leads to triflate elimination and formation of dicationic diboranes with new B–N and B–P bonds. Steric constraints lead to a delayed B–P bond formation in the case of 2-PyCH<sub>2</sub>P<sup>*i*</sup>Bu<sub>2</sub>, allowing intervention in the process (see Figure 1). A test reaction with an aldehyde demonstrates the applicability of this intermediate in FLP-like chemistry.





## **References:**

[1] For a recent review, see for example: J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan, *Chem. Soc. Rev.* **2019**, 48, 3592–3612.

[2] L. Kistner, D. Kowatsch, A. Marz, E. Kaifer, H.-J. Himmel, *Chem. Eur. J.* **2022**, 28, e202104016 (1–17).

