
Influence of impurities in H₂ from different sources on the deactivation of methanol synthesis catalyst

Lucas Warmuth¹, Stephan Pitter¹

¹ Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), 76344 Eggenstein-Leopoldshafen, Germany

E-mail: lucas.warmuth3@kit.edu

Methanol synthesis is an important option for building up a fossil free chemical feedstock or for further transformation to synthetic fuels, if solar-based H₂ or H₂/CO/CO₂ is used.^[1] The deactivation of methanol synthesis catalysts depends on several factors.^[2] As part of the InnoPool-Project "Solar Hydrogen - pure & compressed," we use hydrogen from different sources for methanol synthesis and compare the impact of the impurities on the catalyst deactivation. For this, we conduct parallel catalyst material testing with long time-on-stream to initiate catalyst deactivation, withdraw the materials under an inert atmosphere and investigate them considering sintering and other adverse effects.

Figure. Possible influence on deactivation (seen in decrease of productivity curves) of solar based H₂ in comparison to "conventional" H₂, caused by the different composition of impurities within.

References:

- [1] a) N. Dahmen, J. Sauer, *Processes* **2021**, *9*, 684; b) S. Wiebe, "reFuels-Kraftstoffe neu denken", https://publikationen.bibliothek.kit.edu/1000129322, 2021.
- [2] a) H. Kung, *Catal. Today* **1992**, *11*, 443; b) J. Sun, I. Metcalfe, M. Sahibzada, *Ind. Eng. Chem. Res.* **1999**, *38*, 3868; c) M. Twigg, *Top. Catal.* **2003**, *22*, 191.

